愛伊米

乾貨|一文詳解單電源電路設計

我們經常看到很多非常經典的運算放大器應用圖集,但是這些應用都建立在雙電源的基礎上,很多時候,電路的設計者必須用單電源供電,但是他們不知道該如何將雙電源的電路轉換成單電源電路。在設計單電源電路時需要比雙電源電路更加小心,設計者必須要完全理解這篇文章中所述的內容。

1.1 電源供電和單電源供電

所有的運算放大器都有兩個電源引腳,一般在資料中,它們的標識是VCC+和VCC-,但是有些時候它們的標識是VCC+和GND。這是因為有些資料手冊的作者企圖將這種標識的差異作為單電源運放和雙電源運放的區別。但是,這並不是說他們就一定要那樣使用――他們可能可以工作在其他的電壓下。在運放不是按預設電壓供電的時候,需要參考運放的資料手冊,特別是絕對最大供電電壓和電壓擺動說明。

絕大多數的類比電路設計者都知道怎麼在雙電源電壓的條件下使用運算放大器,比如圖一左邊的那個電路,一個雙電源是由一個正電源和一個相等電壓的負電源組成。一般是正負15V,正負12V和正負5V也是經常使用的。輸入電壓和輸出電壓都是參考地給出的,還包括正負電壓的擺動幅度極限Vom以及最大輸出擺幅。

單電源供電的電路(圖一中右)運放的電源腳連線到正電源和地。正電源引腳接到VCC+,地或者VCC-引腳連線到GND。將正電壓分成一半後的電壓作為虛地接到運放的輸入引腳上,這時運放的輸出電壓也是該虛地電壓,運放的輸出電壓以虛地為中心,擺幅在Vom 之內。

有一些新的運放有兩個不同的最高輸出電壓和最低輸出電壓。這種運放的資料手冊中會特別分別指明Voh 和Vol 。需要特別注意的是有不少的設計者會很隨意的用虛地來參考輸入電壓和輸出電壓,但在大部分應用中,輸入和輸出是參考電源地的,所以設計者必須在輸入和輸出的地方加入隔直電容,用來隔離虛地和地之間的直流電壓。(參見1。3節)

乾貨|一文詳解單電源電路設計

通常單電源供電的電壓一般是5V,這時運放的輸出電壓擺幅會更低。另外現在運放的供電電壓也可以是3V 也或者會更低。出於這個原因在單電源供電的電路中使用的運放基本上都是Rail-To-Rail 的運放,這樣就消除了丟失的動態範圍。

需要特別指出的是輸入和輸出不一定都能夠承受Rail-To-Rail 的電壓。雖然器件被指明是軌至軌(Rail-To-Rail)的,如果運放的輸出或者輸入不支援軌至軌,接近輸入或者接近輸出電壓極限的電壓可能會使運放的功能退化,所以需要仔細的參考資料手冊是否輸入和輸出是否都是軌至軌。這樣才能保證系統的功能不會退化,這是設計者的義務。

1. 2 虛地

單電源工作的運放需要外部提供一個虛地,通常情況下,這個電壓是VCC/2,圖二的電路可以用來產生VCC/2的電壓,但是他會降低系統的低頻特性。

乾貨|一文詳解單電源電路設計

R1 和R2 是等值的,透過電源允許的消耗和允許的噪聲來選擇,電容C1 是一個低通濾波器,用來減少從電源上傳來的噪聲。在有些應用中可以忽略緩衝運放。

在下文中,有一些電路的虛地必須要由兩個電阻產生,但是其實這並不是完美的方法。在這些例子中,電阻值都大於100K,當這種情況發生時,電路圖中均有註明。

1. 3 交流耦合

虛地是大於電源地的直流電平,這是一個小的、區域性的地電平,這樣就產生了一個電勢問題:輸入和輸出電壓一般都是參考電源地的,如果直接將訊號源的輸出接到運放的輸入端,這將會產生不可接受的直流偏移。如果發生這樣的事情,運放將不能正確的響應輸入電壓,因為這將使訊號超出運放允許的輸入或者輸出範圍。

解決這個問題的方法將訊號源和運放之間用交流耦合。使用這種方法,輸入和輸出器件就都可以參考系統地,並且運放電路可以參考虛地。當不止一個運放被使用時,如果碰到以下條件級間的耦合電容就不是一定要使用:第一級運放的參考地是虛地第二級運放的參考第也是虛地這兩級運放的每一級都沒有增益。任何直流偏置在任何一級中都將被乘以增益,並且可能使得電路超出它的正常工作電壓範圍。

如果有任何疑問,裝配一臺有耦合電容的原型,然後每次取走其中的一個,觀察電工作是否正常。除非輸入和輸出都是參考虛地的,否則這裡就必須要有耦合電容來隔離訊號源和運放輸入以及運放輸出和負載。一個好的解決辦法是斷開輸入和輸出,然後在所有運放的兩個輸入腳和運放的輸出腳上檢查直流電壓。所有的電壓都必須非常接近虛地的電壓,如果不是,前級的輸出就就必須要用電容做隔離。(或者電路有問題)

1. 4 組合運放電路

在一些應用中,組合運放可以用來節省成本和板上的空間,但是不可避免的引起相互之間的耦合,可以影響到濾波、直流偏置、噪聲和其他電路特性。設計者通常從獨立的功能原型開始設計,比如放大、直流偏置、濾波等等。在對每個單元模組進行校驗後將他們聯合起來。除非特別說明,否則本文中的所有濾波器單元的增益都是 1。

1. 5 選擇電阻和電容的值

每一個剛開始做模擬設計的人都想知道如何選擇元件的引數。電阻是應該用1 歐的還是應該用1 兆歐的?一般的來說普通的應用中阻值在K 歐級到100K 歐級是比較合適的。高速的應用中阻值在100 歐級到1K 歐級,但他們會增大電源的消耗。便攜設計中阻值在1 兆級到10 兆歐級,但是他們將增大系統的噪聲。用來選擇調整電路引數的電阻電容值的基本方程在每張圖中都已經給出。如果做濾波器,電阻的精度要選擇1% E -96系列(參看附錄A)。一但電阻值的數量級確定了,選擇標準的E-12系列電容。

用E-24系列電容用來做引數的調整,但是應該儘量不用。用來做電路引數調整的電容不應該用5%的,應該用1%。

2.1 放大

放大電路有兩個基本型別:同相放大器和反相放大器。他們的交流耦合版本如圖三所示。對於交流電路,反向的意思是相角被移動180度。這種電路採用了耦合電容 ――Cin 。Cin被用來阻止電路產生直流放大,這樣電路就只會對交流產生放大作用。如果在直流電路中,Cin被省略,那麼就必須對直流放大進行計算。

在高頻電路中,不要違反運放的頻寬限制,這是非常重要的。實際應用中,一級放大電路的增益通常是100倍(40dB),再高的放大倍數將引起電路的振盪,除非在布板的時候就非常注意。如果要得到一個放大倍數比較的大放大器,用兩個等增益的運放或者多個等增益運放比用一個運放的效果要好的多。

乾貨|一文詳解單電源電路設計

2.2 衰減

傳統的用運算放大器組成的反相衰減器如圖四所示。

乾貨|一文詳解單電源電路設計

在電路中R2要小於R1。這種方法是不被推薦的,因為很多運放是不適宜工作在放大倍數小於1倍的情況下。正確的方法是用圖五的電路。

乾貨|一文詳解單電源電路設計

在表一中的一套規格化的R3 的阻值可以用作產生不同等級的衰減。對於表中沒有的阻值,可以用以下的公式計算R3=(Vo/Vin)/(2-2(Vo/Vin))如果表中有值,按以下方法處理:

為RF和Rin在1K到100K之間選擇一個值,該值作為基礎值。將Rin 除以二得到RinA 和RinB。將基礎值分別乘以1 或者2 就得到了Rf、Rin1 和Rin2,如圖五中所示。在表中給R3 選擇一個合適的比例因子,然後將他乘以基礎值。比如,如果Rf是20K,RinA和RinB都是10K,那麼用12。1K的電阻就可以得到-3dB的衰減。

乾貨|一文詳解單電源電路設計

圖六中同相的衰減器可以用作電壓衰減和同相緩衝器使用。

乾貨|一文詳解單電源電路設計

2.3 加法器

圖七是一個反相加法器,他是一個基本的音訊混合器。但是該電路的很少用於真正的音訊混合器。因為這會逼近運放的工作極限,實際上我們推薦用提高電源電壓的辦法來提高動態範圍。同相加法器是可以實現的,但是是不被推薦的。因為訊號源的阻抗將會影響電路的增益。

乾貨|一文詳解單電源電路設計

2.4 減法器

就像加法器一樣,圖八是一個減法器。一個通常的應用就是用於去除立體聲磁帶中的原唱而留下伴音(在錄製時兩通道中的原唱電平是一樣的,但是伴音是略有不同的)。

乾貨|一文詳解單電源電路設計

2.5 模擬電感

圖九的電路是一個對電容進行反向操作的電路,它用來模擬電感。電感會抵制電流的變化,所以當一個直流電平加到電感上時電流的上升是一個緩慢的過程,並且電感中電阻上的壓降就顯得尤為重要。

乾貨|一文詳解單電源電路設計

電感會更加容易的讓低頻透過它,它的特性正好和電容相反,一個理想的電感是沒有電阻的,它可以讓直流電沒有任何限制的透過,對頻率是無窮大的訊號有無窮大的阻抗。

如果直流電壓突然透過電阻R1 加到運放的反相輸入端上的時候,運放的輸出將不會有任何的變化,因為這個電壓同過電容C1 也同樣加到了正相輸出端上,運放的輸出端表現出了很高的阻抗,就像一個真正的電感一樣。

隨著電容C1 不斷的透過電阻R2 進行充電,R2上電壓不斷下降,運放透過電阻R1汲取電流。隨著電容不斷的充電,最後運放的兩個輸入腳和輸出腳上的電壓最終趨向於虛地(Vcc/2)。

當電容C1 完全被充滿時,電阻R1 限制了流過的電流,這就表現出一個串連在電感中電阻。這個串連的電阻就限制了電感的Q 值。真正電感的直流電阻一般會比模擬的電感小的多。這有一些模擬電感的限制:

電感的一段連線在虛地上;模擬電感的Q值無法做的很高,取決於串連的電阻R1;模擬電感並不像真正的電感一樣可以儲存能量,真正的電感由於磁場的作用可以引起很高的反相尖峰電壓,但是模擬電感的電壓受限於運放輸出電壓的擺幅,所以響應的脈衝受限於電壓的擺幅。

2.6 儀用放大器

儀用放大器用於需要對小電平訊號直流訊號進行放大的場合,他是由減法器拓撲而來的。儀用放大器利用了同相輸入端高阻抗的優勢。基本的儀用放大器如圖十所示。

乾貨|一文詳解單電源電路設計

這個電路是基本的儀用放大電路,其他的儀用放大器也如圖中所示,這裡的輸入端也使用了單電源供電。這個電路實際上是一個單電源的應變儀。這個電路的缺點是需要完全相等的電阻,否則這個電路的共模抑制比將會很低。

圖十中的電路可以簡單的去掉三個電阻,就像圖十一中的電路。

乾貨|一文詳解單電源電路設計

這個電路的增益非常好計算。但是這個電路也有一個缺點:那就是電路中的兩個電阻必須一起更換,而且他們必須是等值的。另外還有一個缺點,第一級的運放沒有產生任何有用的增益。

另外用兩個運放也可以組成儀用放大器,就像圖十二所示。

乾貨|一文詳解單電源電路設計

但是這個儀用放大器是不被推薦的,因為第一個運放的放大倍數小於一,所以他可能是不穩定的,而且Vin -上的訊號要花費比Vin +上的訊號更多的時間才能到達輸出端。

這節非常深入地介紹了用運放組成的有源濾波器。在很多情況中,為了阻擋由於虛地引起的直流電平,在運放的輸入端串入了電容。這個電容實際上是一個高通濾波器,在某種意義上說,像這樣的單電源運放電路都有這樣的電容。設計者必須確定這個電容的容量必須要比電路中的其他電容器的容量大100 倍以上。這樣才可以保證電路的幅頻特性不會受到這個輸入電容的影響。如果這個濾波器同時還有放大作用,這個電容的容量最好是電路中其他電容容量的1000 倍以上。如果輸入的訊號早就包含了VCC/2 的直流偏置,這個電容就可以省略。

這些電路的輸出都包含了VCC/2 的直流偏置,如果電路是最後一級,那麼就必須串入輸出電容。

這裡有一個有關濾波器設計的協定,這裡的濾波器均採用單電源供電的運放組成。濾波器的實現很簡單,但是以下幾點設計者必須注意:

1。 濾波器的拐點(中心)頻率

2。 濾波器電路的增益

3。 帶通濾波器和帶阻濾波器的的Q值

4。 低通和高通濾波器的型別(Butterworth 、Chebyshev、Bessell)

不幸的是要得到一個完全理想的濾波器是無法用一個運放組成的。即使可能,由於各個元件之間的負雜互感而導致設計者要用非常複雜的計算才能完成濾波器的設計。通常對波形的控制要求越複雜就意味者需要更多的運放,這將根據設計者可以接受的最大畸變來決定。或者可以通過幾次實驗而最終確定下來。如果設計者希望用最少的元件來實現濾波器,那麼就別無選擇,只能使用傳統的濾波器,透過計算就可以得到了。